Welcome to California

Basic Microbiology

Basics of Infection Prevention 2-Day Mini-Course October-November 2011

Objectives

- Describe role of the microbiology lab in infection prevention
- Describe factors that can adversely affect reliable micro results
- Review definitions
- Discuss the role of the gram stain
- Review common pathogens for HAI
- Review laboratory markers for hepatitis viruses

Microbiology and Infection Prevention

Microbiology laboratory has two important functions in infection prevention

- Clinical: diagnosis and management of infections
- **Epidemiological**: understand infectious microbes in patients (and populations), to find sources and routes of transmission necessary for prevention efforts

Clinical Microbiology

Physician's perspective:

- What's growing?
- What antibiotic can be used?
- Determined either by predictive value of the organism type (e.g. gram negative bacillus) or by complete result with sensitivities

IP or Epidemiologist's perspective:

- Surveillance
- Need both the organism's genus and species (e.g. *Pseudomonas aeruginosa*) and sensitivity pattern
- For determining clusters/outbreaks and assessing trends

Berg's Rule of Thumb #1

No lab test is 100% accurate 100% of the time

Interpret all results accordingly !!

Assessing Accuracy of Lab Results

Many factors can affect accuracy of laboratory tests

1. Pre-analysis:

How was specimen collected, handled, transported, preserved prior to arrival in the lab?

2. Analysis:

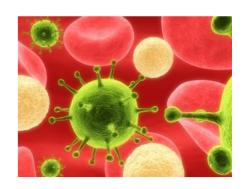
Were correct agar plates used? Incubated at correct temp?
 Skill of the micro tech? Accuracy of biochemicals and instrument system?

3. Post Analysis:

 Accurate result transcription in computer systems? Did results get communicated to the doctor accurately?

Berg's Rule of Thumb #2

Just because a bug is growing does not mean it's causing disease...Colonization??


- For normally sterile body sites, growth may indeed be an infection
- Interpret all cultures knowing what pathogens would typically/normally grow in that body site

Definitions

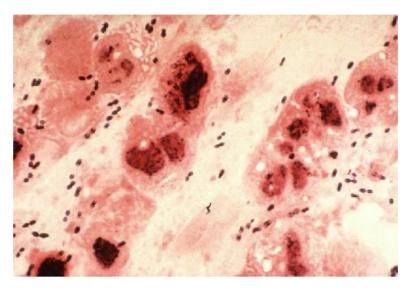
WBC = white blood cells = leukocytes

Major types of WBC

- PMN, Polys = polymorphonuclear leukocytes
 - If increased, likely a bacterial infection
- Segs, Neuts = segmented neutrophils
- Lymphs /mononuclears = lymphocytes
 - If increased, can presume a viral infection

Gram Stains

- Helpful in guiding initial empiric therapy
- Helpful in evaluating quality of culture result
- Does not improve patient outcome if the results don't get to the physician ASAP



Sputum Gram Stain

Will see

- Squamous epithelial cells (SEC)
- WBC
- Bacteria

The presence of SEC is indicative of contamination

Sputum Gram Stain – 2

SEC (squamous epithelial cells, under low power field)

- <10 excellent specimen, no appreciable</p>

oral contamination

10-25 equivocal specimen, but acceptable

>25 reject due to unacceptable levels of

oral contamination

Sputum Gram Stain – 3

WBC (under low power field)

- <10 no infection</p>

(or not much of a response due to immunosuppression, PCP, Mycoplasma, viral, etc)

10-25 equivocal

>25 infection is evident (purulent)

Lower Respiratory Cultures

- Sputum and bronchial wash: often contaminated with oral flora
- Protected brush specimen: not contaminated with oral flora
 - semi-quantitative method recommended
 - put brush into 1.0mL TSI broth; vortex; inoculate agar with urine loop
 - reported as number of CFU/ml*
- Tracheal aspirates: often shows colonizers

*CFU = colony forming units; ml = milliliter

Common Lower Respiratory Tract Pathogens

- S. pneumoniae
 - primarily community acquired pneumonia (CAP)
 - uncommon as healthcare-acquired pneumonia
 - aminoglycosides can select for S. pneumo
- H. influenzae
 - primarily CAP
- Moraxella (Branhamella) catarhallis
 - most often CAP, but can be hospital acquired
- S. aureus
 - CAP and hosp acquired
 - ↑ mortality; must be recognized quickly

Common Lower Respiratory Tract Pathogens - 2

- Pseudomona aeruginosa
 - often ventilator- or ICU-related
- Mycoplasma
 - CAP
- Stenotrophomonas maltophilia
 - ventilator- or ICU-related
- Yeast
 - not usually infecting organism (pneumonia or LRI) unless constitutes ≥70% of all organisms present in specimen and oral contamination can be ruled out

Cerebrospinal Fluid (CSF) Pathogens

- Source: often upper respiratory flora
- Meningitis due to gram negative rods or Staphylococcus usually with predisposing factors such as trauma
- Adult, most common: Strep pneumo (gram positive cocci in pairs)
 - generates increased WBC response
- Meningococcemia: Gram stain showing gram-negative diplococci is diagnostic
 - A true infection emergency

Meningitis

Onset of Symptoms

Patient presents to MD for medical evaluation Lumbar Puncture (LP)

Bacterial

CSF Cloudy
Elevated Protein
Decreased Glucose
WBC; Positive Neutrophils
Organisms on gram stain

Viral

CSF Clear
Normal or Elevated Protein
Normal Glucose
No organisms on gram stain

Blood Cultures

perforation

- A single blood culture consists of two bottles
 - Bottles designed to recover aerobes and anaerobes
 - Irrelevant which bottle has growth or if both or only one bottle has growth
- Adults: low numbers of bacteria in blood (≤30/mL)
 - can lead to negative gram stain and false negative
 - require relatively large volume for blood culture
 - Less blood needed for children due to larger number of bacteria per cc of blood

Polymicrobic blood culture: if intra-abdominal enteric event

e.g. ruptured appendix, bowel surgery, intestinal

Blood Culture Contaminants

Common contaminants

- Coag neg staph
- Diphtheroids
- Bacillus
- Proprionibacteria
- Viridans strep
- Aerococcus
- Micrococcus

For these bacteria to be interpreted as causing infection, two sets of blood cultures are required PLUS specific signs and symptoms (fever,

Common Pathogens of Superficial Surgical Site Infections (SSI)

- Not usually anaerobes
- Generally skin flora, but not necessarily
- Can be gram negative rods (GNR)

Common Pathogens of Deep and Organ Space SSI

Caused by anaerobes and aerobes

- Anaerobic examples
 - B. fragilis
 - Clostridium
 - Peptostreptococcus
 - Propionibacterium (septic arthritis, endocarditis, suture sites for craniotomy)
- Aerobic examples
 - Staphylococcus
 - Streptococcus
 - GNRs

Common UTI Pathogens

- Gram negatives
 - E. coli: Cause 80% of all UTI
 - Proteus, Klebsiella, Enterobacter, Pseudomonas, Gardnerella, 5-10%
- Gram positives
 - MRSA, Enterococcus, Staph saprophyticus, 10-20%
- Positive leukocyte esterase and/or nitrite can be helpful in determining infection status
- Increased WBC with negative cultures may indicate chlamydia or gonorrhea.

Extended Spectrum Beta-lactamase (ESBL)-producing Gram-negative Bacteria

- **Cephalosporins**: developed to combat emergence of β-Lactamase producing GNR
- Soon there was Resistance: to 3rd generation Cephalosporins (eg: cefotaxime, ceftazidime, ceftriaxone) and Monobactams (e.g.: aztreonam)
- **ESBL still sensitive to:** Cephamycins (cefoxitin, cefotetan, cefmetazole) and carbapenems (e.g.: meropenem, imipenem)

ESBL (continued)

Drug of choice for treatment of ESBL infections:

- Carbapenems (mero, dori, imi, erta)
 - Carbapenemase breaks down all Penicillins,
 Cephalosporins, Carbapenems
 - Carbapenems: "the last resort for gram negative infections"
 - Most potent ß-lactam class against almost all Enterobacteriaceae

Unfortunataly, Carbapenemase-resistant Enterobacteriaceae (CRE) beginning to emerge, leaving few treatment options (scary)

Common Bowel Flora

- Normal mix of bacterial flora keeps numbers of yeast, C. difficile, and other potential pathogens in the gut in check
- With altered flora:
 - yeast can proliferate
 - C. diff can proliferate
 - pseudomonas can proliferate
 - VRE can proliferate
 - Etc, etc, etc

Hepatitis A Viral Markers

Hepatitis A Virus (HAV)

- HAV, total current or past HAV
- HAV, IgM definitive diagnosis of active HAV infection

All Hepatitis (acute and chronic) are reportable communicable diseases via local public health.

Acute hepatitis A requires immediate notification.

Hepatitis **B** Viral Markers

Hepatitis B Virus (HBV)

- HbsAg current or chronic HBV
- HbsAb recovery or immunity to HBV
- Anti-Hbc current or previous HBV infection
- Anti-Hbc IgM recent acute infection
 - If also HbsAg ⊕ acute infection
 - Distinguishes acute from chronic infection
- HbeAG highly infectious
 - Guidelines exist for HCWs who are HbeAG positive

All Hepatitis (acute and chronic) are reportable communicable diseases via local public health

Especially important in women of chidbearing years

Interpretation of the Hepatitis B Panel		
Tests	Results	Interpretation
HBsAg	negative	Susceptible
anti-HBc	negative	
anti-HBs	negative	
HBsAg	negative	Immune due to natural infection
anti-HBc	positive	
anti-HBs	positive	
HBsAg	negative	Immune due to hepatitis B vaccination**
anti-HBc	negative	
anti-HBs	positive	
HBsAg	positive	Acutely infected
anti-HBc	positive	
IgM anti-HBc	positive	
anti-HBs	negative	
HBsAg	positive	Chronically infected
anti-HBc	positive	
IgM anti-HBc	negative	
anti-HBs	negative	

HbeAG positive Highly infectious

Hepatitis C Viral Markers

Hepatitis C Virus (HCV)

- Anti-HCV
 - Presence of antibodies to the virus, indicating exposure to HCV
 - Active vs. Chronic vs. Resolved ?
- HCV RIBA
 - Confirmatory test of antibodies to the virus
 - Demonstrates if HCV was true positive (present or past is unanswered)

All Hepatitis (acute and chronic) are reportable communicable diseases via local public health

Role of Microbiology in HAI Prevention

Critical to

- Outbreak management
- Performing additional tests for epidemiologic analyses
- Infection surveillance
- Knowledge of new microbes or unusual resistance
- Design of antibiotic formulary (antibiogram)
- Interpretation of microbiological results
- Education of health care staff

Questions?

For more information, please contact any HAI Liaison Team member.

Thank you

